Motion Capture (MoCap) has become an integral tool in fields such as sports, medicine, and the entertainment industry. The cost of deploying high-end equipment and the lack of expertise and knowledge limit the usage of MoCap from its full potential, especially at beginner and intermediate levels of sports coaching. The challenges faced while developing affordable MoCap systems for such levels have been discussed in order to initiate an easily accessible system with minimal resources.
View Article and Find Full Text PDFWe synthesised a polyaniline/mica (Mica-PANI) nanocomposite using naturally occurring muscovite mica by a top-down approach. The developed coating materials were characterised using a different technique to investigate their chemical and structural properties using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Furthermore, the electrochemical properties of the coating materials were investigated by linear sweep voltammetry (LSV).
View Article and Find Full Text PDFThe ideal climatic and environmental conditions for sugarcane cultivation are present all year round in the tropical island of Sri Lanka. Given the annual sugar consumption of the nation, a significant amount of sugarcane bagasse ash (SCBA), a by-product with no intended commercial use but potential environmental and health risks, is produced. Numerous studies have been conducted recently to assess the viability of using SCBA as a pozzolanic material in structural applications.
View Article and Find Full Text PDFThe growing demand for water purification provided the initial momentum to produce lanthanide-incorporated nano-hydroxyapatite (HAP) such as HAP·CeO, HAP·CeO·La(OH) (2:1), and HAP·CeO·La(OH) (3:2). These materials open avenues to remove fluoride and lead ions from contaminated water bodies effectively. Composites of HAP containing CeO and La(OH) were prepared using in situ wet precipitation of HAP, followed by the addition of Ce(SO) and La(NO) into the same reaction mixture.
View Article and Find Full Text PDFIn this study, hydroxyapatite (HAP) nanocomposites were prepared with chitosan (HAP-CTS), carboxymethyl cellulose (HAP-CMC), alginate (HAP-ALG), and gelatin (HAP-GEL) using a simple wet chemical in situ precipitation method. The synthesized materials were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, and thermogravimetric analysis. This revealed the successful synthesis of composites with varied morphologies.
View Article and Find Full Text PDF