Nat Rev Immunol
December 2024
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation.
View Article and Find Full Text PDFLysosomal damage induces stress granule (SG) formation. However, the importance of SGs in determining cell fate and the precise mechanisms that mediate SG formation in response to lysosomal damage remain unclear. Here, we describe a novel calcium-dependent pathway controlling SG formation, which promotes cell survival during lysosomal damage.
View Article and Find Full Text PDFBackground: Nintedanib (NTB) is a multiple tyrosine kinase inhibitor, been investigated for many disease conditions like idiopathic pulmonary fibrosis (IPF), systemic sclerosis interstitial lung disease (SSc-ILD) and non-small cell lung cancer (NSCLC). NTB is available as oral capsule formulation, but its ability to detect degradants formed through oxidative, photolytic and hydrolytic processes makes it difficult to quantify. In the current work, a novel reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated.
View Article and Find Full Text PDF