Publications by authors named "K Q Zheng"

T cells targeting a KRAS mutation can induce durable tumor regression in some patients with metastatic epithelial cancer. It is unknown whether T cells targeting mutant KRAS that are capable of killing tumor cells can be identified from peripheral blood of patients with pancreatic cancer. We developed an in vitro stimulation approach and identified HLA-A*11:01-restricted KRAS G12V-reactive CD8+ T cells and HLA-DRB1*15:01-restricted KRAS G12V-reactive CD4+ T cells from peripheral blood of 2 out of 6 HLA-A*11:01-positive patients with pancreatic cancer whose tumors expressed KRAS G12V.

View Article and Find Full Text PDF

The separation of C cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical processes in the petrochemical industry. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C-Br⋯N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113 ± 2; purity up to 98% +), which is the highest record for benzene/cyclohexane/cyclohexene separation to date.

View Article and Find Full Text PDF

As a complex and dynamically regulated process, wound healing is collaboratively carried out by multiple types of cells. However, the precise mechanisms by which these cells contribute to immune regulation are not yet fully understood. Although research on bone regeneration has been quite extensive, the application of bioactive glass (BG) in skin tissue repair remains still relatively underexplored.

View Article and Find Full Text PDF

In the CO reduction reactions (CORR), the product selectivity is strongly dependent on the binding energy differences of the key intermediates. Herein, we systematically evaluated the CORR reaction pathways on single transition metal atom doped catalysts TMCu/CuO by density functional theory (DFT) methods and found that *CO is more likely to undergo C-O bond cleavage rather than be hydrogenated on TMCu/CuO (TM = Sc, Ti, V, Cr, Mn, Fe, Co), which facilitates C production with a low-energy pathway of OC-C coupling, while it prefers to be hydrogenated to form CHO on TMCu/CuO (TM = Ni, Cu). The defects of Cu in TMCu/CuO were confirmed to enhance the production of ethanol.

View Article and Find Full Text PDF