Spintronic terahertz emitters (STEs), based on optical excitation of nanometer thick ferromagnetic/heavy metal (FM/HM) heterojunctions, have become important sources for the generation of terahertz (THz) pulses. However, the efficiency of the optical-to-THz conversion remains limited. Although optical techniques have been developed to enhance the optical absorption, no investigations have studied the application of THz cavities.
View Article and Find Full Text PDFThe periodic structures are widely studied in numerous optical applications and there is a number of good tools for numerical modeling of such a structures (for example rigorous coupled-wave analysis, finite-difference time-domain, finite element method etc.). However, when it comes to the modeling of incoherent effects in many cases of practical interest, the current methods are not rigorous enough or depend on computationally demanding averaging of coherent response.
View Article and Find Full Text PDFSpectroscopic Mueller matrix ellipsometry is becoming increasingly routine across physical branches of science, even outside optics. The highly sensitive tracking of the polarization-related physical properties offers a reliable and non-destructive analysis of virtually any sample at hand. If coupled with a physical model, it is impeccable in performance and irreplaceable in versatility.
View Article and Find Full Text PDFMueller matrix ellipsometry has been used to precisely characterize quartz waveplates for demanding applications in the semiconductor industry and high precision polarimetry. We have found this experimental technique to be beneficial to use because it enables us to obtain absolute and precise measurement of retardation in a wide spectral range, waveplate orientation, and compound waveplate adjustment. In this paper, the necessity of including the optical activity in the Mueller matrix model and data treatment is demonstrated.
View Article and Find Full Text PDFWe experimentally demonstrate a disruptive approach to control magnetooptical nonreciprocal effects. It has been known that the combination of a magneto-optically (MO) active substrate and extraordinary transmission (EOT) effects through deep-subwavelength nanoslits of a noble metal grating, leads to giant enhancements of the magnitude of the MO effects that would normally be obtained on just the bar substrate. This was demonstrated both in the transmission configuration, where the OET is directly observed, as well as in reflection configuration, where an increase of a transmitted power results in a decrease in reflected power.
View Article and Find Full Text PDF