Background: Radical resection of spinal cord lipomas reduces the rate of re-tethering. Current conventional neurophysiological mapping techniques are not able to differentiate between crucial motor nerve roots and sensory roots. Enhanced differentiation could contribute to complete resection.
View Article and Find Full Text PDFPhenylketonuria is a rare metabolic disease resulting from a deficiency of the enzyme phenylalanine hydroxylase. Recent cross-sectional evidence suggests that early-treated adults with phenylketonuria exhibit alterations in cortical grey matter compared to healthy peers. However, the effects of high phenylalanine exposure on brain structure in adulthood need to be further elucidated.
View Article and Find Full Text PDFBackground: Phenylketonuria (PKU) represents a congenital metabolic defect that disrupts the process of converting phenylalanine (Phe) into tyrosine. Earlier investigations have revealed diminished cognitive performance and changes in brain structure and function (including the presence of white matter lesions) among individuals affected by PKU. However, there exists limited understanding regarding cerebral blood flow (CBF) and its potential associations with cognition, white matter lesions, and metabolic parameters in patients with PKU, which we therefore aimed to investigate in this study.
View Article and Find Full Text PDF