Vaping cannabinoids in electronic (e)-cigarette devices is rapidly increasing in popularity, particularly among adolescents, although the chemistry affecting the composition of the vape aerosol is not well understood. This work investigates the formation of aerosol mass, bioactive hydroxyquinones, and harmful or potentially harmful carbonyls from the e-cigarette vaping of natural and synthetic cannabinoids e-liquids in propylene glycol and vegetable glycerin (PG/VG) solvent at a 50 mg/mL concentration in a commercial fourth-generation vaping device. The following cannabinoids were studied: cannabidiol (CBD), 8,9-dihydrocannabidiol (H2CBD), 1,2,8,9-tetrahydrocannabidiol (H4CBD), cannabigerol (CBG), and cannabidiolic acid (CBDA).
View Article and Find Full Text PDFHigher coil temperature in e-cigarette devices increases the formation of aerosols and toxicants, such as carbonyls. At present, the health implications of vaping at higher temperatures, including exacerbation of pulmonary inflammation, are largely unknown when aerosol dose is considered. To isolate the pulmonary effects of coil temperature, C57BL/6 mice were exposed to e-cigarette aerosols generated at lower (190°C) or higher (250°C) temperature for 3 days, while maintaining a similar chamber aerosol concentration.
View Article and Find Full Text PDFElectronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA).
View Article and Find Full Text PDF