Despite the benefits of minimally invasive surgery, interventions such as laparoscopic liver surgery present unique challenges, like the significant anatomical differences between preoperative images and intraoperative scenes due to pneumoperitoneum, patient pose, and organ manipulation by surgical instruments. To address these challenges, a method for intraoperative three-dimensional reconstruction of the surgical scene, including vessels and tumors, without altering the surgical workflow, is proposed. The technique combines neural radiance field reconstructions from tracked laparoscopic videos with ultrasound three-dimensional compounding.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2024
We have developed a novel visualization system based on the reconstruction of high resolution and high frame rate images from a multi-tiered stream of samples that are rendered framelessly. This decoupling of the rendering system from the display system is particularly suitable when dealing with very high resolution displays or expensive rendering algorithms, where the latency of generating complete frames may be prohibitively high for interactive applications. In contrast to the traditional frameless rendering technique, we generate the lowest latency samples on the optimal sampling lattice in the 3D domain.
View Article and Find Full Text PDF