Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.
View Article and Find Full Text PDFBackground: Keratoconus is an etiologically complex, degenerative corneal disease that eventually leads to loss of corneal integrity. Cells in corneal epithelium and endothelium express various types of ion channels that play important roles in ocular pathology. This emphasizes the need of understanding alterations of ion channels in keratoconus.
View Article and Find Full Text PDFThe present work describes a preclinical trial (, and ) protocol to assess the biomechanical performance and osteogenic capability of 3D-printed polymeric scaffolds implants used to repair partial defects in a sheep mandible. The protocol spans multiple steps of the medical device development pipeline, including initial concept design of the scaffold implant, digital twin finite element modeling, manufacturing of the device prototype, device implantation, and laboratory mechanical testing. First, a patient-specific one-body scaffold implant used for reconstructing a critical-sized defect along the lower border of the sheep mandible ramus was designed using on computed-tomographic (CT) imagery and computer-aided design software.
View Article and Find Full Text PDF