Publications by authors named "K Parmley"

Background: Root system architecture (RSA) traits are of interest for breeding selection; however, measurement of these traits is difficult, resource intensive, and results in large variability. The advent of computer vision and machine learning (ML) enabled trait extraction and measurement has renewed interest in utilizing RSA traits for genetic enhancement to develop more robust and resilient crop cultivars. We developed a mobile, low-cost, and high-resolution root phenotyping system composed of an imaging platform with computer vision and ML based segmentation approach to establish a seamless end-to-end pipeline - from obtaining large quantities of root samples through image based trait processing and analysis.

View Article and Find Full Text PDF

We explored the capability of fusing high dimensional phenotypic trait (phenomic) data with a machine learning (ML) approach to provide plant breeders the tools to do both in-season seed yield (SY) prediction and prescriptive cultivar development for targeted agro-management practices (e.g., row spacing and seeding density).

View Article and Find Full Text PDF

The rate of advancement made in phenomic-assisted breeding methodologies has lagged those of genomic-assisted techniques, which is now a critical component of mainstream cultivar development pipelines. However, advancements made in phenotyping technologies have empowered plant scientists with affordable high-dimensional datasets to optimize the operational efficiencies of breeding programs. Phenomic and seed yield data was collected across six environments for a panel of 292 soybean accessions with varying genetic improvements.

View Article and Find Full Text PDF

Cultivation of aphid-resistant soybean varieties can reduce yield losses caused by soybean aphids. However, discovery of aphid biotypes that are virulent on resistant soybean greatly threatens sustained utilization of host plant resistance to control soybean aphids. The objective of this study was to identify and genetically characterize aphid resistant soybean accessions in a diverse collection of 308 plant introductions in maturity groups (MG) I and II.

View Article and Find Full Text PDF

Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets.

View Article and Find Full Text PDF