Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes.
View Article and Find Full Text PDFIntroduction: The liberal use of blood cultures in emergency departments (EDs) leads to low yields and high numbers of false-positive results. False-positive, contaminated cultures are associated with prolonged hospital stays, increased antibiotic usage and even higher hospital mortality rates. This trial aims to investigate whether a recently developed and validated machine learning model for predicting blood culture outcomes can safely and effectively guide clinicians in withholding unnecessary blood culture analysis.
View Article and Find Full Text PDFBackground: Excessive use of blood cultures (BCs) in Emergency Departments (EDs) results in low yields and high contamination rates, associated with increased antibiotic use and unnecessary diagnostics. Our team previously developed and validated a machine learning model to predict BC outcomes and enhance diagnostic stewardship. While the model showed promising initial results, concerns over performance drift due to evolving patient demographics, clinical practices, and outcome rates warrant continual monitoring and evaluation of such models.
View Article and Find Full Text PDFThis commentary explores the potential impact of artificial intelligence (AI) in acute medicine, considering its possibilities and challenges. With its ability to simulate human intelligence, AI holds the promise for supporting timely decision-making and interventions in acute care. While AI has significantly contributed to improvements in various sectors, its implementation in healthcare remains limited.
View Article and Find Full Text PDFare host-adapted bacteria that infect and reproduce primarily in amoeboid protists. Using similar infection mechanisms, they infect human macrophages, and cause Legionnaires' disease, an atypical pneumonia, and the milder Pontiac fever. We hypothesized that, despite the similarities in infection mechanisms, the hosts are different enough that there exist high-selective value mutations that would dramatically increase the fitness of inside the human host.
View Article and Find Full Text PDF