Magnetic materials are widely used for many technologies in energy, health, transportation, computation, and data storage. For the latter, the readout of the magnetic state of a medium is crucial. Optical readout based on the magneto-optical Faraday effect was commercialized but soon abandoned because of the need for a complex circular polarization-sensitive readout.
View Article and Find Full Text PDFHere we report on the strong magneto-chiral dichroism (MChD) detected through visible and near-infrared light absorption up to 5.0 T on {ErNi} metal clusters obtained by reaction of enantiopure chiral ligands and Ni and Er precursors. Single-crystal diffraction analysis reveals that these compounds are 34 heterometallic clusters, showing helical chirality.
View Article and Find Full Text PDFHere we report magneto-chiral dichroism (MChD) detected through visible and near-infrared light absorption of a chiral dysprosium(III) coordination polymer. The two enantiomers of [Dy(H6(py))(hfac)] [H6(py) = 2,15-bis(4-pyridyl)ethynylcarbo[6]helicene; hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate], where the chirality is provided by a functionalized helicene ligand, were structurally, spectroscopically, and magnetically investigated. Magnetic measurements reveal a slow relaxation of the magnetization, with differences between enantiopure and racemic systems rationalized on the basis of theoretical calculations.
View Article and Find Full Text PDFHere, we report the molecular self-assembly of hydroxido-bridged {LnNi} ((Ln = Dy, Y) metal clusters by the reaction of enantiopure chiral ligands, namely, (/)-(2-hydroxy-3-methoxybenzyl)-serine), with Ni and Ln precursors. Single-crystal diffraction analysis reveals that these compounds are isostructural sandwich-like 3d-4f heterometallic clusters showing helical chirality. Direct current magnetic measurements on {DyNi} indicates ferromagnetic coupling between Dy and Ni centers, whereas those on {YNi} denote that the Ni centers are antiferromagnetically coupled and/or magnetically anisotropic.
View Article and Find Full Text PDFMagnetochiral dichroism (MChD), a fascinating manifestation of the light-matter interaction characteristic for chiral systems under magnetic fields, has become a well-established optical phenomenon reported for many different materials. However, its interpretation remains essentially phenomenological and qualitative, because the existing microscopic theory has not been quantitatively confirmed by confronting calculations based on this theory with experimental data. Here, we report the experimental low-temperature MChD spectra of two archetypal chiral paramagnetic crystals taken as model systems, tris(1,2-diaminoethane)nickel(II) and cobalt(II) nitrate, for light propagating parallel or perpendicular to the axis of the crystals, and the calculation of the MChD spectra for the Ni(II) derivative by state-of-the-art quantum chemical calculations.
View Article and Find Full Text PDF