Publications by authors named "K Paigen"

The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype.

View Article and Find Full Text PDF

PRDM9 is a DNA-binding histone methyltransferase that designates and activates recombination hotspots in mammals by locally trimethylating lysines 4 and 36 of histone H3. In mice, we recently reported two independently produced point mutations at the same residue, Glu360Pro (Prdm9EP) and Glu360Lys (Prdm9EK), which severely reduce its H3K4 and H3K36 methyltransferase activities in vivo. Prdm9EP is slightly less hypomorphic than Prdm9EK, but both mutations reduce both the number and amplitude of PRDM9-dependent H3K4me3 and H3K36me3 peaks in spermatocytes.

View Article and Find Full Text PDF
Article Synopsis
  • In some animals, a protein called PRDM9 helps determine where genetic mixing, or recombination, happens during reproduction.
  • Some mice and other animals can still have babies even if they don't have PRDM9, which is surprising.
  • Scientists found that certain genetic traits and a protein called CHK2 help female mice stay fertile without PRDM9, showing that there are special rules for how males and females reproduce.
View Article and Find Full Text PDF

Chromatin barriers prevent spurious interactions between regulatory elements and DNA-binding proteins. One such barrier, whose mechanism for overcoming is poorly understood, is access to recombination hot spots during meiosis. Here we show that the chromatin remodeler HELLS and DNA-binding protein PRDM9 function together to open chromatin at hot spots and provide access for the DNA double-strand break (DSB) machinery.

View Article and Find Full Text PDF

A hallmark of meiosis is the rearrangement of parental alleles to ensure genetic diversity in the gametes. These chromosome rearrangements are mediated by the repair of programmed DNA double-strand breaks (DSBs) as genetic crossovers between parental homologs. In mice, humans, and many other mammals, meiotic DSBs occur primarily at hotspots, determined by sequence-specific binding of the PRDM9 protein.

View Article and Find Full Text PDF