Exploitation is a common feature of social interactions, which can be modified by ecological context. Here we investigate effects of ecological history on exploitation phenotypes in bacteria. In experiments with the bacterium Myxococcus xanthus, prior resource levels of different genotypes interacting during cooperative multicellular development were found to regulate social fitness, including whether cheating occurs.
View Article and Find Full Text PDFEcological context often modifies biotic interactions, yet effects of ecological history are poorly understood. In experiments with the bacterium , resource-level histories of genotypes interacting during cooperative multicellular development were found to strongly regulate social fitness. Yet how developmental spore production responded to variation in resource-level histories between interactants differed greatly between cooperators and cheaters; relative-fitness advantages gained by cheating after high-resource growth were generally reduced or absent if one or both parties experienced low-resource growth.
View Article and Find Full Text PDFPrey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter.
View Article and Find Full Text PDFBackground: Social defectors may meet diverse cooperators. Genotype-by-genotype interactions may constrain the ranges of cooperators upon which particular defectors can cheat, limiting cheater spread. Upon starvation, the soil bacterium Myxococcus xanthus cooperatively develops into spore-bearing fruiting bodies, using a complex regulatory network and several intercellular signals.
View Article and Find Full Text PDF