Precisely crafted hierarchical architectures found in naturally derived biomaterials underpin the exceptional performance and functionality showcased by the host organism. In particular, layered helical assemblies composed of cellulose, chitin, or collagen serve as the foundation for some of the most mechanically robust and visually striking natural materials. By utilizing structured materials in additive manufacturing techniques such as extrusion-based 3D printing, the intrinsic deformation process can be used to implement bottom-up design of printed constructs, offering the potential to create intricate macroscale geometries with embedded nanoscale functionality.
View Article and Find Full Text PDFObjective: Cauda Equina Syndrome (CES) poses significant neurological risks if untreated. Diagnosis relies on clinical and radiological features. As the symptoms are often non specific and common, the diagnosis is usually made after a MRI scan.
View Article and Find Full Text PDFConsolidated long-term memories can undergo strength or content modification via protein synthesis-dependent reconsolidation. This is the process by which a reminder cue initiates reactivation of the memory trace, triggering destabilization. Older and more strongly encoded spatial memories can resist destabilization due to biological boundary conditions.
View Article and Find Full Text PDFAcid sphingomyelinase deficiency (ASMD) is a rare progressive genetic disorder caused by pathogenic variants in the gene causing low or absent activity of the enzyme acid sphingomyelinase, resulting in subsequent accumulation of its substrate, sphingomyelin. Signs and symptoms of excessive lysosomal sphingomyelin storage, such as hepatosplenomegaly and pulmonary impairment, and in a subset of patients, progressive neurological manifestations, have long been recognized as hallmarks of the disease. Uncontrolled accumulation of sphingomyelin has important and complex downstream metabolic and immunologic consequences that contribute to the disease burden.
View Article and Find Full Text PDFPompe disease is a rare, progressive neuromuscular disease caused by deficient lysosomal glycogen degradation, and includes both late-onset (LOPD) and severe infantile-onset (IOPD) phenotypes. Due to very small patient numbers in IOPD and the high phenotypic heterogeneity observed in this population, a quantitative systems pharmacology (QSP)-based "digital twin" approach was developed to perform an in silico comparison of the efficacy of avalglucosidase alfa vs. the standard of care, in a virtual population of IOPD patients.
View Article and Find Full Text PDF