Chemical transformations at metal oxide interfaces that are triggered by mechanical energy set the basis for applications in the fields of tribo- and mechanochemistry, ceramic and composite processing, and piezoelectric devices. We investigated the early stages of tribochemically initiated radical chemistry of structurally well-defined TiO and BaTiO nanoparticles in argon or in oxygen atmosphere. Electron paramagnetic resonance spectroscopy enabled the determination of the chemical nature and concentration of paramagnetic surface species which form upon uniaxial powder compaction at room temperature.
View Article and Find Full Text PDFConfigurations of composite metal oxide nanoparticles are typically far off their thermodynamic equilibrium state. As such they represent a versatile but so far overlooked source material for the intergranular solid-state chemistry inside ceramics. Here, it is demonstrated how the admixture of Fe and In ions to MgO nanoparticles, as achieved by flame spray pyrolysis, can be used to engage ion exsolution, phase separation, and subsequent spinel formation inside the network of diamagnetic and insulating MgO grains.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2023
Compaction of dehydroxylated MgO nanocrystal powders produces adsorbed oxygen radicals with characteristic UV-vis spectroscopic fingerprints. Identical absorption bands arise upon UV excitation in an oxygen atmosphere but in the absence of uniaxial pressure. Photophysical calculations on MgO gas-phase clusters reveal that the observed optical transitions at 4.
View Article and Find Full Text PDFIon exsolution can be instrumental to engineer intergranular regions inside ceramic microstructures. BaO admixtures that were trapped inside nanometer-sized MgO grains during gas phase synthesis undergo annealing-induced exsolution to generate photoluminescent surface and interface structures. During their segregation from the bulk into the grain interfaces, the BaO admixtures impact grain coarsening and powder densification, effects that were compared for the first time using an integrated characterization approach.
View Article and Find Full Text PDF