Background: Predicting the endemic/epidemic transition during the temporal evolution of a contagious disease.
Methods: Indicators for detecting the transition endemic/epidemic, with four scalars to be compared, are calculated from the daily reported news cases: coefficient of variation, skewness, kurtosis, and entropy. The indicators selected are related to the shape of the empirical distribution of the new cases observed over 14 days.
Epidemiological models-which help us understand and forecast the spread of infectious disease-can be valuable tools for public health. However, barriers exist that can make it difficult to employ epidemiological models routinely within the repertoire of public health planning. These barriers include technical challenges associated with constructing the models, challenges in obtaining appropriate data for model parameterization, and problems with clear communication of modeling outputs and uncertainty.
View Article and Find Full Text PDFObjective: The objective of this article is to develop a robust method for forecasting the transition from endemic to epidemic phases in contagious diseases using COVID-19 as a case study.
Methods: Seven indicators are proposed for detecting the endemic/epidemic transition: variation coefficient, entropy, dominant/subdominant spectral ratio, skewness, kurtosis, dispersion index and normality index. Then, principal component analysis (PCA) offers a score built from the seven proposed indicators as the first PCA component, and its forecasting performance is estimated from its ability to predict the entrance in the epidemic exponential growth phase.
In this study, a mathematical model for studying the dynamics of monkeypox virus transmission with non-pharmaceutical intervention is created, examined, and simulated using real-time data. Positiveness, invariance, and boundedness of the solutions are thus examined as fundamental features of mathematical models. The equilibrium points and the prerequisites for their stability are achieved.
View Article and Find Full Text PDF