Purpose: Patients who develop metastatic melanoma have a very poor prognosis, and new treatments are needed to improve the response rates. Melanocortin-1 receptor (MC1R) is a promising target for radionuclide therapy of metastatic melanoma, and alpha-melanocyte stimulating hormone (α-MSH) peptide analogs show high affinities to MC1Rs. Because targeted alpha therapy (TAT) can be a desirable treatment for metastatic melanoma, this study aimed to develop an At-labeled α-MSH peptide analog for TAT of metastatic melanoma.
View Article and Find Full Text PDFPt-based intermetallic alloy particles with a Pt skin layer have higher catalytic activity than solid-solution alloy particles and have attracted considerable attention for practical applications in polymer electrolyte fuel cells. However, the reason for the superior performance of intermetallic alloys is not yet fully understood. Because the catalytic reaction proceeds on the topmost surface of the particle, it is necessary to clarify the relationship between the periodic structure of the intermetallic alloy and the Pt atomic coordination on the surface.
View Article and Find Full Text PDFWe investigated nuclear medicine therapeutics targeting the L-type amino acid transporter 1 (LAT1). We previously reported that a nuclear medicine therapeutic drug using astatine 211 (At), an alpha-emitting nuclide that can be produced in an accelerator and targets LAT1 as a molecular target, is effective. The seed compound was 3-[At] Astato-α-methyl-L-tyrosine (At-AAMT-OH-L).
View Article and Find Full Text PDFNovel nuclear medicine therapeutics are being developed by labeling medium-molecular-weight compounds with short-lived alpha-emitting radionuclides. Fibroblast activation protein α (FAPα) is recognized as a highly useful molecular target, and its inhibitor, FAPI, is a compound capable of , both therapeutic and diagnostic, for cancer treatment. In this study, we compared the functions of two compounds that target FAPα: At-FAPI1 and At-FAPI2.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) presents limited therapeutic options and is associated with poor prognosis. Early detection and the development of novel therapeutic agents are therefore imperative. Fibroblast activation protein (FAP) is a membrane protein expressed on cancer-associated fibroblasts (CAFs) that plays an essential role in TNBC proliferation, migration, and invasion.
View Article and Find Full Text PDF