In the realm of agricultural sustainability, the utilization of plant genetic resources for enhanced disease resistance is paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. To capitalize on the potential of plant genetic resources, we focused on a barley core collection from the German ex situ genebank and contrasted it with a European elite collection.
View Article and Find Full Text PDFWe mapped Ryd4 in a 66.5 kbp interval in barley and dissociated it from a sublethality factor. These results will enable a targeted selection of the resistance in barley breeding.
View Article and Find Full Text PDFParental selection is at the beginning and contributes significantly to the success of any breeding work. The value of a cross is reflected in the potential of its progeny population. Breeders invest substantial resources in evaluating progeny to select the best performing genotypes as candidates for variety development.
View Article and Find Full Text PDFResistance QTL to root lesion nematode (Pratylenchus thornei) in wheat (Triticum aestivum), QRlnt.sk-6D and QRlnt.sk-2B, were mapped to intervals of 3.
View Article and Find Full Text PDFSoil salinity and sodicity are major constraints to global cereal production, but breeding for tolerance has been slow. Narrow gene pools, over-emphasis on the sodium (Na) exclusion mechanism, little attention to osmotic stress/tissue tolerance mechanism(s) in which accumulation of inorganic ions such as Na is implicated, and lack of a suitable screening method have impaired progress. The aims of this study were to discover novel genes for Na accumulation using genome-wide association studies, compare growth responses to salinity and sodicity in low-Na bread Westonia with and genes and high-Na bread wheat Baart-46, and evaluate growth responses to salinity and sodicity in bread wheats with varying leaf Na concentrations.
View Article and Find Full Text PDF