This paper presents cutting-edge advancements in exponential synchronization and encryption techniques, focusing on Quaternion-Valued Artificial Neural Networks (QVANNs) that incorporate two-sided coefficients. The study introduces a novel approach that harnesses the Cayley-Dickson representation method to simplify the complex equations inherent in QVANNs, thereby enhancing computational efficiency by exploiting complex number properties. The study employs the Lyapunov theorem to craft a resilient control system, showcasing its exponential synchronization by skillfully regulating the Lyapunov function and its derivatives.
View Article and Find Full Text PDFThis paper develops a neurodynamic model for distributed nonconvex-constrained optimization. In the distributed constrained optimization model, the objective function and inequality constraints do not need to be convex, and equality constraints do not need to be affine. A Hestenes-Powell augmented Lagrangian function for handling the nonconvexity is established, and a neurodynamic system is developed based on this.
View Article and Find Full Text PDF