A compact inertial electrostatic confinement (IEC) fusion neutron source was developed. Imaging tests using the cylindrical IEC neutron source were conducted with the indirect imaging plate (IP) method using dysprosium foil and an imaging plate. An array of powder contained in a stainless-steel blade and Cd pins was successfully imaged.
View Article and Find Full Text PDFWe realize Mn δ-doping into Si and Si/Ge interfaces using Mn atomic chains on Si(001). Highly sensitive X-ray absorption fine structure techniques reveal that encapsulation at room temperature prevents the formation of silicides/germanides while maintaining one-dimensional anisotropic structures. This is revealed by studying both the incident X-ray polarization dependence and post-annealing effects.
View Article and Find Full Text PDFWe successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.
View Article and Find Full Text PDFA totally anisotropic peculiar Rashba-Bychkov (RB) splitting of electronic bands was found on the Tl/Si(110)-(1×1) surface with C_{1h} symmetry by angle- and spin-resolved photoelectron spectroscopy and first-principles theoretical calculation. The constant energy contour of the upper branch of the RB split band has a warped elliptical shape centered at a k point located between Γ[over ¯] and the edge of the surface Brillouin zone, i.e.
View Article and Find Full Text PDFWe have applied simultaneous horizontal and vertical bias to a single molecule (2 nm(2)) in an ordered and disordered matrix to virtually isolate and tune its property without taking it out physically from its environment. Using a dedicated electrode system, we have locally tuned nanoscale properties vertically by STM, while stabilizing its environment by applying a global electric field horizontally. Using this technique, we report tuning of molecular conformations in room temperature, whose evolution of states has been statistically investigated.
View Article and Find Full Text PDF