A 75-unit long oligoribonucleotide corresponding to the sequence of the Saccharomyces cerevisiae initiator tRNA was synthesized chemically. The crude RNA was purified, and the sequence was verified by RNA sequencing techniques. A particularly useful purification step involved hydrophobic chromatography on BND-cellulose.
View Article and Find Full Text PDFConformational analyses using the single-strand-specific nuclease from mung bean and restriction endonucleases have been performed on a series of DNA fragments related to the sequence of the yeast initiator tRNA(Met). Mung bean nuclease cleaves DNA fragments exclusively in some, but not all, single-stranded regions as predicted by RNA secondary structural rules. Comparison of cleavage patterns of yeast initiator tRNA(Met), tDNA(Met) (a DNA oligomer having the sequence of tRNA(Met] and the anti-tDNA(Met) (the complement of tDNA(Met] suggests that the conformation of the three molecules is very similar.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 1988
Chemical synthesis is described of a 77-nucleotide-long RNA molecule that has the sequence of an Escherichia coli Ado-47-containing tRNA(fMet) species in which the modified nucleosides have been substituted by their unmodified parent nucleosides. The sequence was assembled on a solid-phase, controlled-pore glass support in a stepwise manner with an automated DNA synthesizer. The ribonucleotide building blocks used were fully protected 5'-monomethoxytrityl-2'-silyl-3'-N,N-diisopropylaminophosphoram idites.
View Article and Find Full Text PDFThe effect of U(34) dethiolation on the anticodon-anticodon association between E. coli tRNA(Glu) and yeast tRNA(Phe) has been studied by the temperature jump relaxation technique. An important destabilization upon replacement of the thioketo group of s2U(34) by a keto group, was revealed by a lowering of melting temperature of about 20 degrees C.
View Article and Find Full Text PDFWe have constructed eight anticodon-modified Escherichia coli initiator methionine (fMet) tRNAs by insertion of synthetic ribotrinucleotides between two fragments ('half molecules') derived from the initiator tRNA. The trinucleotides, namely CAU (the normal anticodon), CAA, CAC, CAG, GAA, GAC, GAG and GAU, were joined to the 5' and 3' tRNA fragments with T4 RNA ligase. The strategy of reconstruction permitted the insertion of radioactive 32P label between nucleotides 36 and 37.
View Article and Find Full Text PDF