Mesenchymal stem cells (MSCs) are an integral part of the tumor microenvironment (TME); however, their role is somewhat controversial: conflicting reports suggest that, depending on the stage of tumor development, MSCs can either support or suppress tumor growth and spread. Additionally, the influence of MSCs on drug resistance is also ambiguous. Previously, we showed that, despite MSCs proliferating significantly more slowly than cancer cells, there are chemotherapeutic drugs which proved to be similarly toxic to both cell types.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) or fibroblasts are one of the most abundant cell types in the tumor microenvironment (TME) exerting various anti- and pro-apoptotic effects during tumorigenesis, invasion, and drug treatment. Despite the recently discovered importance of MSCs in tumor progression and therapy, the response of these cells to chemotherapeutics compared to cancer cells is rarely investigated. A widely accepted view is that these naive MSCs have higher drug tolerance than cancer cells due to a significantly lower proliferation rate.
View Article and Find Full Text PDFThe resistance of tumors against anticancer drugs is a major impediment for chemotherapy. Tumors often develop multidrug resistance as a result of the cellular efflux of chemotherapeutic agents by ABC transporters such as P-glycoprotein (ABCB1/P-gp), Multidrug Resistance Protein 1 (ABCC1/MRP1), or Breast Cancer Resistance Protein (ABCG2/BCRP). By screening a chemolibrary comprising 140 compounds, we identified a set of naturally occurring aurones inducing higher cytotoxicity against P-gp-overexpressing multidrug-resistant (MDR) cells versus sensitive (parental, non-P-gp-overexpressing) cells.
View Article and Find Full Text PDFBone tissue regeneration is a major, worldwide medical need, and several strategies have been developed to support the regeneration of extensive bone defects, including stem cell based bone grafts. In addition to the application of stem cells with high osteogenic potential, it is important to maintain proper blood flow in a bone graft to avoid inner graft necrosis. Mesenchymal stem cells (MSCs) may form both osteocytes and endothelial cells; therefore we examined the combined osteogenic and endothelial differentiation capacities of MSCs derived from adipose tissue, Wharton's jelly, and periodontal ligament.
View Article and Find Full Text PDFThe role of extracellular vesicles (EVs) in mediating the immunosuppressory properties of mesenchymal stem cells (MSCs) has recently attracted remarkable scientific interest. The aim of this work was to analyze the transport mechanisms of membrane and cytoplasmic components between T lymphocytes and adipose tissue-derived MSCs (AD-MSCs), by focusing on the role of distinct populations of EVs, direct cell-cell contacts, and the soluble mediators per se in modulating T lymphocyte function. We found that neither murine thymocytes and human primary T cells nor Jurkat lymphoblastoid cells incorporated appreciable amounts of MSC-derived microvesicles (MVs) or exosomes (EXOs).
View Article and Find Full Text PDF