Background: Different cell types have distinctive patterns of chromosome positioning in the nucleus. Although ectopic affinity-tethering of specific loci can be used to relocate chromosomes to the nuclear periphery, endogenous nuclear envelope proteins that control such a mechanism in mammalian cells have yet to be widely identified.
Results: To search for such proteins, 23 nuclear envelope transmembrane proteins were screened for their ability to promote peripheral localization of human chromosomes in HT1080 fibroblasts.
The California Environmental Protection Agency (Cal/EPA) Environmental Justice Action Plan calls for guidelines for evaluating "cumulative impacts." As a first step toward such guidelines, a screening methodology for assessing cumulative impacts in communities was developed. The method, presented here, is based on the working definition of cumulative impacts adopted by Cal/EPA: "Cumulative impacts means exposures, public health or environmental effects from the combined emissions and discharges in a geographic area, including environmental pollution from all sources, whether single or multi-media, routinely, accidentally, or otherwise released.
View Article and Find Full Text PDFNesprins are a family of nuclear transmembrane proteins anchored via Sun proteins to the nuclear membrane. Analysis of nesprins during human muscle development revealed an increase in nesprin-1-giant during early myogenesis in vitro. During the transition from immature to mature muscle fibres in vivo, nesprin-2 partly replaced nesprin-1 at the nuclear envelope and short nesprin isoforms became dominant.
View Article and Find Full Text PDFThe giant isoforms of nesprins 1 and 2 are emerging as important players in cellular organization, particularly in the positioning of nuclei, and possibly other organelles, within the cytoplasm. The experimental evidence suggests that nesprins also occur at the inner nuclear membrane, where they interact with the nuclear lamina. In this paper, we consider whether this is consistent with current ideas about nesprin anchorage and about mechanisms for nuclear import of membrane proteins.
View Article and Find Full Text PDFMutations in the gene encoding the inner nuclear membrane proteins lamins A and C produce cardiac and skeletal muscle dysfunction referred to as Emery Dreifuss muscular dystrophy. Lamins A and C participate in the LINC complex that, along with the nesprin and SUN proteins, LInk the Nucleoskeleton with the Cytoskeleton. Nesprins 1 and 2 are giant spectrin-repeat containing proteins that have large and small forms.
View Article and Find Full Text PDF