Publications by authors named "K Nakadate"

Article Synopsis
  • Recent research indicates that a deficiency in the melanocortin 1 receptor (MC1R) is linked to neurodegeneration similar to Parkinson's disease in a specific brain region called the substantia nigra (SN).
  • The study used techniques like in situ hybridization and immunohistochemistry to identify the location and characteristics of MC1R, finding it mostly in susceptible dopaminergic neurons and in a type of inhibitory neuron known as parvalbumin (PV)-positive neurons.
  • The results show that MC1R is involved not only in the cell membrane but also in organelles like mitochondria, suggesting that it, along with a modulator called attractin (Atrn), plays an important role in
View Article and Find Full Text PDF

Hepatitis, a significant medical concern owing to its potential to cause acute and chronic liver disease, necessitates early intervention. In this study, we aimed to elucidate the histopathological features of lipopolysaccharide-induced hepatitis in mice, focusing on tissue alterations. The results demonstrated that hepatocytes exhibited decreased eosin staining, indicating cellular shrinkage, whereas sinusoids were swollen with blood cells.

View Article and Find Full Text PDF

Brain development is an extremely complex and essential biological process that begins at the start of life and continues throughout an individual's lifespan [...

View Article and Find Full Text PDF

Chronic obesity is an alarmingly growing global public health concern, posing substantial challenges for the prevention of chronic diseases, including hyperinsulinemia, type 2 diabetes, hyperlipidemia, hypertension, and coronary artery disease, and there is an urgent need for early mitigation strategies. We previously reported the obesity-reducing effects of green tea and β-cryptoxanthin intake. However, since tea has a complex mixture of compounds, it remained unclear which component contributed the most to this effect.

View Article and Find Full Text PDF

Mutations in multiple epidermal growth factor-like domain 8 (MEGF8), a multidomain transmembrane protein encoded by a gene conserved across species, cause Carpenter's syndrome, which is associated with learning disabilities, mental health issues, and left-right patterning abnormalities. MEGF8 interacts with MGRN1, a protein that functions as an E3 ubiquitin ligase and is involved in multiple physiological and pathological processes. However, the mechanism underlying the distribution of MEGF8 in the central nervous system (CNS) and its cellular and subcellular locations remain unknown.

View Article and Find Full Text PDF