Stability of surface coatings against environmental stress, such as pH, high ionic strength, mechanical forces, and so forth, is crucial for biomedical application of implants. Here, a novel extracellular-matrix-like polyelectrolyte multilayer (PEM) system composed of collagen I (Col I) and oxidized glycosaminoglycans (oGAGs) was stabilized by intrinsic cross-linking due to formation of imine bonds between aldehydes of oxidized chondroitin sulfate (oCS) or hyaluronan (oHA) and amino groups of Col I. It was also found that Col I contributed significantly more to overall mass in CS-Col I than in HA-Col I multilayer systems and fibrillized particularly in the presence of native and oxidized CS.
View Article and Find Full Text PDFBackground: The interplay between numerous factors, including the size, shape, coating, surface charge and composition of particles is known to affect the pharmacokinetics and biodistribution of superparamagnetic iron oxides (SPIOs). This makes understanding the role of each factor independently quite challenging.
Methods: In the present study, the in vivo magnetic resonance imaging (MRI), biodistribution and hepatic clearance evaluations of two SPIOs Formulations A and B developed from ∼13.
Background: Novel aqueous nano-scaled formulations were developed for hydrophobic oleic acid stabilized monodisperse superparamagnetic magnetite nanocrystals.
Methods: In the study, single and mixed lipid amphiphiles based on Cremophor RH-40 (Crem-RH-40), Solutol HS-15 (Sol-HS-15), Phospholipon-100H (PL-100H) and sucrose ester M-1695 (SE-M-1695) were employed at varying concentrations. Isotonicity and physiological pH adjustments were achieved by using 5% w/v mannitol in 10 mM pH 7.
The aim of this study was to simultaneously control the release of multiple vitamins exhibiting very different water-solubility and molecular weights from multiparticulates. Several types of sucrose esters and triglycerides were studied as matrix formers in granules prepared by wet granulation, melt granulation or compression and grinding. The vitamin release kinetics were measured in 0.
View Article and Find Full Text PDFThe development of high concentration antibody formulations presents a major challenge for the formulation scientist, as physical characteristics and stability behavior change compared to low concentration protein formulations. The aim of this study was to investigate the potential correlation between surface activity and shaking stress stability of a model antibody-polysorbate 20 formulation. The surface activities of pure antibody and polysorbate 20 were compared, followed by a study on the influence of a model antibody on the apparent critical micelle concentration (CMC) of polysorbate 20 over a protein concentration range from 10 to 150 mg/mL.
View Article and Find Full Text PDF