Publications by authors named "K N Jarvis"

Purpose: To evaluate the reproducibility of important biomarkers like wall shear stress (WSS), pulse wave velocity (PWV), and net flow across two 4D flow MRI imaging protocols with different coverages: aorta-targeted 4D flow MRI (AT4D) and whole-heart 4D flow (WH4D) protocols.

Methods: Thirty-eight control subjects (43.2 ± 10.

View Article and Find Full Text PDF

Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n = 12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity (CVR) in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory.

View Article and Find Full Text PDF

This dataset encompasses high-resolution computed tomography scans of small samples of the lower Mount Simon Sandstone from the subsurface of the Illinois Basin. Samples were collected as part of various geological carbon storage characterization efforts and publications focusing on the Mount Simon as a storage reservoir, with scanning performed at the National Energy Technology Laboratory. Thirty-seven three-dimensional (3D) volumes at various resolutions are described and presented as a resource that illustrates the pore and grain size distributions, as well as other petrographic characteristics.

View Article and Find Full Text PDF

Introduction: Intracranial 4D flow MRI enables quantitative assessment of hemodynamics in patients with intracranial atherosclerotic disease (ICAD). However, quantitative assessments are still challenging due to the time-consuming vessel segmentation, especially in the presence of stenoses, which can often result in user variability. To improve the reproducibility and robustness as well as to accelerate data analysis, we developed an accurate, fully automated segmentation for stenosed intracranial vessels using deep learning.

View Article and Find Full Text PDF

Objective: To investigate mode of birth in relation to onset of labor and Bishop score.

Design: Retrospective observational cohort design.

Setting: A 434-bed Magnet redesignated community hospital.

View Article and Find Full Text PDF