Amorphous solid dispersion (ASD) technology is often used as a promising strategy to improve the solubility of active pharmaceutical ingredients (APIs). ASDs allow APIs to be dispersed at the molecular level in a polymer carrier, destroying the crystalline structure of the APIs and, thanks to the polymer, providing long-term supersaturation in solution. However, stability issues are an obstacle to the development of new medications with ASD.
View Article and Find Full Text PDFObjective: To evaluate the effectiveness of intraoperative angiography and fluorescence navigation with indocyanine green in reducing the risks of intra- and postoperative complications, as well as resection quality in patients with gastric cancer.
Material And Methods: The main group consisted of patients who underwent intraoperative angiography and fluorescence navigation with indocyanine green (=43). The control group included patients without these procedures (=154).
Polymers (Basel)
October 2023
N-butyl-N-methyl-1-phenylpyrrole[1,2-a] pyrazine-3-carboxamide (GML-3) is a potential candidate for combination drug therapy due to its anxiolytic and antidepressant activity. The anxiolytic activity of GML-3 is comparable to diazepam. The antidepressant activity of GML-3 is comparable to amitriptyline.
View Article and Find Full Text PDFThis work aimed to develop and characterize a water-soluble, high-release active pharmaceutical ingredient (API) composite based on the practically water-insoluble API N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide (GML-3), a substance with antidepressant and anxiolytic action. This allows to ensure the bioavailability of the medicinal product of combined action. Composites obtained by the method of creating amorphous solid dispersions, where polyvinylpyrrolidone (PVP) or Soluplus was used as a polymer, were studied for crystallinity, stability and the release of API from the composite into purified water.
View Article and Find Full Text PDFThe detailed theoretical study of high-frequency signal gain, when a probe microwave signal is comparable to the AC pump electric field in a semiconductor superlattice, is presented. We identified conditions under which a doped superlattice biased by both DC and AC fields can generate or amplify high-frequency radiation composed of harmonics, half-harmonics, and fractional harmonics. Physical mechanisms behind the effects are discussed.
View Article and Find Full Text PDF