The average eukaryotic tRNA contains 13 posttranscriptional modifications; however, their functional impact is largely unknown. Our understanding of the complex tRNA aminoacylation machinery in metazoans also remains limited. Herein, using a series of high-resolution cryo-electron microscopy (cryo-EM) structures, we provide the mechanistic basis for recognition and aminoacylation of fully-modified cellular tRNA by human lysyl-tRNA synthetase (h-LysRS).
View Article and Find Full Text PDFProXp-ala is a key component of the translational machinery in all three Domains of life. This enzyme helps to maintain the fidelity of proline codon translation through aminoacyl-tRNA proofreading. In the first step of tRNA aminoacylation, the cognate aminoacyl-tRNA synthetase (aaRS) binds and activates an amino acid in the enzyme's synthetic active site.
View Article and Find Full Text PDFCurr Opin Struct Biol
October 2024
HIV-1, the causative agent of AIDS, is a retrovirus that packages two copies of unspliced viral RNA as a dimer into newly budding virions. The unspliced viral RNA also serves as an mRNA template for translation of two polyproteins. Recent studies suggest that the fate of the viral RNA (genome or mRNA) is determined at the level of transcription.
View Article and Find Full Text PDFFaithful mRNA decoding depends on the accuracy of aminoacyl-tRNA synthetases (ARSs). Aminoacyl-tRNA proofreading mechanisms have been well-described in bacteria, humans, and plants. However, our knowledge of translational fidelity in protozoans is limited.
View Article and Find Full Text PDF