Publications by authors named "K Morten"

Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial respiration is functional. However, the lower energy efficiency of aerobic glycolysis with respect to mitochondrial respiration makes this behaviour, namely the Warburg effect, counter-intuitive, although it has now been recognized as source of anabolic precursors.

View Article and Find Full Text PDF

In the past two decades, immunometabolism has emerged as a crucial field, unraveling the intricate molecular connections between cellular metabolism and immune function across various cell types, tissues, and diseases. This review explores the insights gained from studies using the emerging technology, Raman micro-spectroscopy, to investigate immunometabolism. Raman micro-spectroscopy provides an exciting opportunity to directly study metabolism at the single cell level where it can be combined with other Raman-based technologies and platforms such as single cell RNA sequencing.

View Article and Find Full Text PDF

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by debilitating fatigue that profoundly impacts patients' lives. Diagnosis of ME/CFS remains challenging, with most patients relying on self-report, questionnaires, and subjective measures to receive a diagnosis, and many never receiving a clear diagnosis at all. In this study, a single-cell Raman platform and artificial intelligence are utilized to analyze blood cells from 98 human subjects, including 61 ME/CFS patients of varying disease severity and 37 healthy and disease controls.

View Article and Find Full Text PDF

Three-dimensional (3D) cell cultures have recently gained popularity in the biomedical sciences because of their similarity to the in vivo environment. SH-SY5Y cells, which are neuronal cells and are commonly used to investigate neurodegenerative diseases, have particularly been reported to be differentiated as neuron-like cells expressing neuron-specific markers of mature neurons in static 3D culture environments when compared to static 2D environments, and those in perfusion environments have not yet been investigated. Microfluidic technology has provided perfusion environment which has more similarity to in vivo through mimicking vascular transportation of nutrients, but air bubbles entering into microchannels drastically increase instability of the flow.

View Article and Find Full Text PDF