Publications by authors named "K Montzka"

Background: The conventional expansion of human mesenchymal stromal cells (hMSC) for tissue engineering or (pre-) clinical investigation includes the use of 10% fetal bovine serum (FBS). However, there exists immense lot-to-lot variability in FBS samples and time consuming as well as cost intensive lot pre-testing is essential to guarantee optimal hMSC proliferation and stem cells characteristics maintenance. Furthermore, lot-to-lot variability impedes the long-term consistency of research and comparability between research groups.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OEC) are a promising graftable cell population for improving functional outcomes after experimental spinal cord injury. However only few studies have focused on experimental models with large cavitations, which require bridging substrates to transfer and maintain the donor cells within the lesion site. Here, a state-of-the-art collagen-based multi-channeled three dimensional scaffold was used to deliver olfactory ensheathing cells to 2 mm long unilateral low-thoracic hemisection cavities.

View Article and Find Full Text PDF

Objectives: • To analyse the in vitro cytocompatibility of several engineered collagen-based biomaterials for tissue engineering of the urinary tract. • Tissue-engineered implants for the reconstruction of the urinary tract are of major interest for urological researchers as well as clinicians. Although several materials have been investigated, the ideal replacement has still to be identified.

View Article and Find Full Text PDF

Background Aims: The beneficial effect of human (h) mesenchymal stromal cell (MSC) transplantation in a variety of cell-based intervention strategies is widely believed to be because of paracrine mechanisms. The modification of hMSC cytokine and growth-factor expression patterns were studied following exposure to lipopolysaccharide (LPS) and tissue homogenates (representing tissue debris) from normal and pathologic tissues.

Methods: Human bone marrow-derived MSC were stimulated with LPS or exposed to homogenate from normal or pathologic rat spinal cord or heart.

View Article and Find Full Text PDF

In the present in vitro study, the axon growth promoting effects of human neural progenitor-derived astrocytes (hNP-AC) were investigated in simple 2D- as well as in more complex 3D-culture systems. The interactions of the hNP-AC with migrating Schwann cells and fibroblasts were also studied. hNP-AC were found to promote extensive dorsal root ganglion axon regeneration in 2D cultures, being even greater than that observed on the positive control, laminin-coated substrate.

View Article and Find Full Text PDF