Publications by authors named "K Monisha"

Background: Precise localized printing of plasmonic nanoparticles at desired locations can find a plethora of applications in diverse areas, including nanophotonics, nanomedicine, and microelectronics. The focused laser beam-assisted optical printing technique has illustrated its potential for the localized printing of differently shaped plasmonic particles. However, the technique is either time-consuming or often requires focused optical radiation, limiting its practical applications.

View Article and Find Full Text PDF

A proinflammatory role of has been implicated in the pathogenesis of atherosclerosis as an emerging novel epigenetic diagnostic biomarker. However, its association with the clinical and cardiovascular function in coronary artery disease is largely unknown. The study aimed to profile the gene expression of - in human peripheral blood mononuclear cells and to evaluate their influence on hematological, biochemical, and two-dimensional echocardiographic indices in CAD.

View Article and Find Full Text PDF

Background: The thermally coupled energy states that contribute to the upconversion luminescence of rare earth element-doped nanoparticles have been the subject of intense research due to their potential nanoscale temperature probing. However, the inherent low quantum efficiency of these particles often limits their practical applications, and currently, surface passivation and incorporation of plasmonic particles are being explored to improve the inherent quantum efficiency of the particle. However, the role of these surface passivating layers and the attached plasmonic particles in the temperature sensitivity of upconverting nanoparticles while probing the intercellular temperature has not been investigated thus far, particularly at the single nanoparticle level.

View Article and Find Full Text PDF

The quenching in luminescence emission of an optically trapped ligand-free hydrophilic NaYF:Yb, Er upconversion nanoparticle (UCNP) as a function of rose Bengal dye molecule is investigated here. The removal of oleate capping of the as-prepared UCNPs was achieved via acid treatment and characterized via FTIR and Raman spectroscopic techniques. Further, the capping removed hydrophilic single UCNP is optically trapped and the emission studies were carried out as a function of excitation laser power.

View Article and Find Full Text PDF

The selective ultra-sensitive detection of a very low concentration of analyte in a liquid environment using surface-enhanced Raman spectroscopy (SERS) is a challenging task owing to the poor reproducibility of the Raman signals arising from the nonstationary nature of the substrate. However, plasmonic metal particle-incorporated microparticles can be effectively 3-D arrested in a liquid environment that can serve as a stable SERS substrate by employing an optical trapping force. Herein, we demonstrate a 3-D optically trapped Au-attached SiO microparticle as an efficient SERS substrate that can detect 512 pM for Rhodamine6G and 6.

View Article and Find Full Text PDF