Publications by authors named "K Mogolodi Dimpe"

Antimony(III) is a rare element whose chemical and toxicological properties bear a resemblance to those of arsenic. As a result, the presence of Sb(III) in water might have adverse effects on human health and aquatic life. However, Sb(III) exists at very ultra-trace levels which may be difficult for direct quantification.

View Article and Find Full Text PDF

The adoption of green technology is very important to protect the environment and thus there is a need for improving the existing methods for the fabrication of carbon materials. As such, this work proposes to discuss, interrogate, and propose viable hydrothermal, solvothermal, and other advanced carbon materials synthesis methods. The synthesis approaches for advanced carbon materials to be interrogated will include the synthesis of carbon dots, carbon nanotubes, nitrogen/titania-doped carbons, graphene quantum dots, and their nanocomposites with solid/polymeric/metal oxide supports.

View Article and Find Full Text PDF

Simultaneous extraction and preconcentration of several potentially toxic metal ions have received great attention because of their toxicological effects on aquatic life and human beings. Multi-ion imprinted polymers (MIIP) have proved to be promising adsorbents with excellent specific recognition performance than single-ion imprinted polymer. Therefore, in this study, the MIIP strategy was employed for simultaneous extraction and enrichment of Sb(III), Cd(II), Pb(II) and Te(IV) ions from drinking water sources.

View Article and Find Full Text PDF

The presence of toxic trace metals and high concentrations of essential elements in the environment presents a serious threat to living organism. Various methods have been used for the detection, preconcentration and remediation of these metals from biological, environmental and food matrices. Owing to the complexicity of samples, methods with high selectivity have been used for detection, preconcentration and remediation of these trace metals.

View Article and Find Full Text PDF

The application of a magnetic mesoporous carbon/β-cyclodextrin-chitosan (MMPC/Cyc-Chit) nanocomposite for the adsorptive removal of danofloxacin (DANO), enrofloxacin (ENRO) and levofloxacin (LEVO) from aqueous and environmental samples is reported in this study. The morphology and surface characteristics of the magnetic nanocomposite were investigated by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) adsorption-desorption and Fourier transform infrared spectroscopy (FTIR). The N adsorption-desorption results revealed that the prepared nanocomposite was mesoporous and the BET surface area was 1435 m g.

View Article and Find Full Text PDF