Motivated by the study of recurrent orbits and dynamics within a Morse set of a Morse decomposition we introduce the concept of Morse predecomposition of an isolated invariant set within the setting of both combinatorial and classical dynamical systems. While Morse decomposition summarizes solely the gradient part of a dynamical system, the developed generalization extends to the recurrent component as well. In particular, a chain recurrent set, which is indecomposable in terms of Morse decomposition, can be represented more finely in the Morse predecomposition framework.
View Article and Find Full Text PDFComputational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit.
View Article and Find Full Text PDFLarge programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small "core" network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program.
View Article and Find Full Text PDFWe demonstrate a modeling and computational framework that allows for rapid screening of thousands of potential network designs for particular dynamic behavior. To illustrate this capability we consider the problem of hysteresis, a prerequisite for construction of robust bistable switches and hence a cornerstone for construction of more complex synthetic circuits. We evaluate and rank most three node networks according to their ability to robustly exhibit hysteresis where robustness is measured with respect to parameters over multiple dynamic phenotypes.
View Article and Find Full Text PDFHistory dependence of the evolution of complex systems plays an important role in forecasting. The precision of the predictions declines as the memory of the systems is lost. We propose a simple method for assessing the rate of memory loss that can be applied to experimental data observed in any metric space X.
View Article and Find Full Text PDF