A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7 and DHCR7 genotype.
View Article and Find Full Text PDFCholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications.
View Article and Find Full Text PDFNeonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis).
View Article and Find Full Text PDF