The aim of the work was to develop a new HPLC-MS/MS method that allows for the simultaneous detection of antimicrobials agents (targeted analysis) and their transformation products (non-targeted analysis), which enabled the elucidation of their transformation pathways in the environment. Targeted analysis was performed for 16 selected antimicrobials agents (AMs) in wastewater collected at different stages of the treatment process and river water from sections before and after wastewater discharge. The samples were collected in the Łyna sewage treatment plant (Olsztyn, Poland) in three measuring periods at different seasons.
View Article and Find Full Text PDFSulfonamide antibiotics (SAs) are used on a large scale in human and veterinary medicine. The main goal of this study was to develop a method for the detection of selected SAs (sulfamethoxazole, sulfadiazine, sulfamethazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethiazole, and sulfisoxazole) in aqueous samples (targeted analysis), and then conduct a non-targeted analysis to determine the transformation products to elucidate their degradation pathways. These analyses were performed using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry.
View Article and Find Full Text PDFThis study determined the impact of poultry and bovine manure fertilization on the content of antibiotics, heavy metals (HMs), and the quantitative and qualitative composition of integrase and antibiotic resistance genes in soil, groundwater, and crops cultivated on manure-amended plots. Antibiotic concentration levels were analyzed using the HPLC-MS/MS, heavy metal concentration level were measured by HGAAS and ICP-OES, while the integrase genes and ARGs were quantified using Real-Time PCR (qPCR) method. Manure, soil, and crops samples contained the highest concentration of Zn (10-10 ng g) and Cu (10-10 ng g) of all HMs tested.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2021
The residues of antimicrobials used in human and veterinary medicine are popular pollutants of anthropogenic origin. The main sources of introducing antimicrobials into the environment are sewage treatment plants and the agricultural industry. Antimicrobials in animal manure contaminate the surrounding soil as well as groundwater, and can be absorbed by plants.
View Article and Find Full Text PDFThe increase in the production and consumption of pharmaceuticals increases their presence in the global environment, which may result in direct threats to living organisms. For this reason, there is a need for new methods to analyze drugs in environmental samples. Here, a new procedure for separating and determining selected drugs (diclofenac, ibuprofen, and carbamazepine) from bottom sediment and water samples was developed.
View Article and Find Full Text PDF