Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes.
View Article and Find Full Text PDFCalcitonin gene-related peptide (CGRP) and histamine plasma concentrations increase during migraine attacks. Both mediators are potent vasodilators, and they have been shown to reciprocally contribute to the release of each other in the trigeminovascular system, possibly driving migraine development. A high-histamine-content diet triggers migraine in patients who have histamine degradation deficiency owing to diaminooxidase (DAO) gene mutations.
View Article and Find Full Text PDFBackground: The role of calcitonin gene-related peptide (CGRP) in the cyclic pattern of cluster headache is unclear. To acquire biological insight and to comprehend why only episodic cluster headache responds to CGRP monoclonal antibodies, we examined whether plasma CGRP changes between disease states (i.e.
View Article and Find Full Text PDFBackground: Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) are effective in the prevention of chronic and frequent episodic migraine. Since the antibodies do not cross the blood brain barrier, their antinociceptive effect is attributed to effects in meningeal tissues. We aimed to probe if such an antibody can be visualized within the dura mater and the trigeminal ganglia following its administration to rats and to examine if the activity of the trigeminovascular nocisensor complex is influenced by this treatment.
View Article and Find Full Text PDFTreatment with the anti-CGRP antibody fremanezumab is successful in the prevention of chronic and frequent episodic migraine. In preclinical rat experiments, fremanezumab has been shown to reduce calcitonin gene-related peptide (CGRP) release from trigeminal tissues and aversive behaviour to noxious facial stimuli, which are characteristic pathophysiological changes accompanying severe primary headaches. To further decipher the effects of fremanezumab that underlie these antinociceptive effects in rats, immunohistochemistry and ELISA techniques were used to analyse the content and concentration of CGRP in the trigeminal ganglion, as well as the ratio of trigeminal ganglion neurons which are immunoreactive to CGRP and CGRP receptor components, 1-10 days after subcutaneous injection of fremanezumab (30 mg/kg) compared to an isotype control antibody.
View Article and Find Full Text PDF