We demonstrate externally modulated widely tunable lasers co-integrated with semiconductor optical amplifiers (SOAs) heterogeneously integrated on silicon. The widely tunable laser enables continuous single-mode operation over a tuning range of approximately 40 nm, with a side-mode suppression ratio (SMSR) of at least 50 dB and an average waveguide-coupled optical power of 5 mW. The integrated electro-absorption modulator (EAM) exhibits an extinction ratio (ER) of 16 dB when reversed biased at -2 V.
View Article and Find Full Text PDFHopfield networks are iterative procedures able to solve combinatorial optimization problems. New studies regarding algorithm-architecture adequacy are fostered by the re-emergence of hardware implementations of such methods in the form of Ising machines. In this work, we propose an optoelectronic architecture suitable for fast processing and low energy consumption.
View Article and Find Full Text PDFWe demonstrate a heterogeneously integrated III-V-on-SOI distributed feedback laser with a low grating strength (κ < 40 cm) and a narrow linewidth of Δν = 118 kHz. The laser operates single mode with a side-mode suppression ratio over 45 dB, provides a single-sided waveguide-coupled output power of 22 mW (13.4 dBm) and has a wall-plug efficiency of 17%.
View Article and Find Full Text PDFChip-scale frequency comb generators lend themselves as multi-wavelength light sources in highly scalable wavelength-division multiplexing (WDM) transmitters and coherent receivers. Among different options, quantum-dash (QD) mode-locked laser diodes (MLLD) stand out due to their compactness and simple operation along with the ability to provide a flat and broadband comb spectrum with dozens of equally spaced optical tones. However, the devices suffer from strong phase noise, which impairs transmission performance of coherent links, in particular when higher-order modulation formats are to be used.
View Article and Find Full Text PDFQuantum-dash (QD) mode-locked laser diodes (MLLD) lend themselves as chip-scale frequency comb generators for highly scalable wavelength-division multiplexing (WDM) links in future data-center, campus-area, or metropolitan networks. Driven by a simple DC current, the devices generate flat broadband frequency combs, containing tens of equidistant optical tones with line spacings of tens of GHz. Here we show that QD-MLLDs can not only be used as multi-wavelength light sources at a WDM transmitter, but also as multi-wavelength local oscillators (LO) for parallel coherent reception.
View Article and Find Full Text PDF