Publications by authors named "K Marker"

Genetic summary data are broadly accessible and highly useful, including for risk prediction, causal inference, fine mapping, and incorporation of external controls. However, collapsing individual-level data into summary data, such as allele frequencies, masks intra- and inter-sample heterogeneity, leading to confounding, reduced power, and bias. Ultimately, unaccounted-for substructure limits summary data usability, especially for understudied or admixed populations.

View Article and Find Full Text PDF

Batteries based on sulfur cathodes offer a promising energy storage solution due to their potential for high performance, cost-effectiveness, and sustainability. However, commercial viability is challenged by issues such as polysulfide migration, volume changes, uneven phase nucleation, limited ion transport, and sluggish sulfur redox kinetics. Addressing these challenges requires insights into the structural, morphological, and chemical evolution of phases, the associated volume changes and internal stresses, and ion and polysulfide diffusion within the battery.

View Article and Find Full Text PDF

Genetic summary data are broadly accessible and highly useful including for risk prediction, causal inference, fine mapping, and incorporation of external controls. However, collapsing individual-level data into groups masks intra- and inter-sample heterogeneity, leading to confounding, reduced power, and bias. Ultimately, unaccounted substructure limits summary data usability, especially for understudied or admixed populations.

View Article and Find Full Text PDF

The long- and local-range structure and electronic properties of the high-voltage lithium-ion cathode material for Li-ion batteries, LiNiO, remain widely debated, as are the degradation phenomena at high states of delithiation, limiting the more widespread use of this material. In particular, the local structural environment and the role of Jahn-Teller distortions are unclear, as are the interplay of distortions and point defects and their influence on cycling behavior. Here, we use Li NMR measurements in combination with density functional theory (DFT) calculations to examine Jahn-Teller distortions and antisite defects in LiNiO.

View Article and Find Full Text PDF

Ion adsorption at solid-water interfaces is crucial for many electrochemical processes involving aqueous electrolytes including energy storage, electrochemical separations, and electrocatalysis. However, the impact of the hydronium (HO) and hydroxide (OH) ions on the ion adsorption and surface charge distributions remains poorly understood. Many fundamental studies of supercapacitors focus on non-aqueous electrolytes to avoid addressing the role of functional groups and electrolyte pH in altering ion uptake.

View Article and Find Full Text PDF