Vaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. Here, to precisely engineer bnAb boosting immunogens, we use molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env).
View Article and Find Full Text PDFColloidal crystals, such as opals, display bright and iridescent colors when assembled from submicron particles. While the brightness and purity of iridescent colors are well suited for ornaments, signaling, and anticounterfeiting, their angle dependence limits the range of their applications. In contrast, colloidal glasses display angle-independent structural color that is tunable by the size and local arrangement of particles.
View Article and Find Full Text PDFThe CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs.
View Article and Find Full Text PDFVaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and, in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. To precisely engineer bnAb boosting immunogens, we used molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env).
View Article and Find Full Text PDFA successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4 T cells.
View Article and Find Full Text PDF