Publications by authors named "K Madhumathi"

Bone cancer or osteosarcoma is an aggressive cancer affecting the long bones and is treated by a combination of surgery and chemotherapy. Local drug delivery directly to the site of bone cancer and the use of plant-based drugs has been explored towards improving the efficacy and decreasing the toxicity of the anti-cancer drugs. Curcumin, derived from turmeric is highly effective against cancer cells and shows very low toxicity against normal cells.

View Article and Find Full Text PDF

A dual local drug delivery system (DDS) composed of calcium phosphate bioceramic nanocarriers aimed at treating the antibacterial, anti-inflammatory, and bone-regenerative aspects of periodontitis has been developed. Calcium-deficient hydroxyapatite (CDHA, Ca/P = 1.61) and tricalcium phosphate (β-TCP) were prepared by microwave-accelerated wet chemical synthesis method.

View Article and Find Full Text PDF

Carbonated apatite has a chemical composition quite similar to biological apatite found in native bone. The incorporation of carbonate (CO2-3) ions groups into the apatitic crystal structure can tailor its crystallinity, solubility and biological activity that benefit the bone repair and regeneration. In this study, we report a simple and elegant method of synthesizing carbonated calcium deficient hydroxyapatite (ECCDHA) nanoparticles from egg shell wastes and its efficacy has been compared with synthetic calcium deficient hydroxyapatite (SCDHA) nanoparticles.

View Article and Find Full Text PDF

The role of nanotechnology has evinced remarkable interest in the field of drug delivery. Bioceramics are inorganic biomaterials which are frequently used as bone substitutes. They have been explored in drug delivery as carriers for antibiotics, anti-osteoporotic drugs and anticancer drugs.

View Article and Find Full Text PDF

Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria.

View Article and Find Full Text PDF