Publications by authors named "K M Whipple"

Establishing that climate exerts an important general influence on topography in tectonically active settings has proven an elusive goal. Here, we show that climates ranging from arid to humid consistently influence fluvial erosional efficiency and thus topography, and this effect is captured by a simple metric that combines channel steepness and mean annual rainfall, . Accounting for spatial rainfall variability additionally increases the sensitivity of channel steepness to lithologic and tectonic controls on topography, enhancing predictions of erosion and rock uplift rates, and supports the common assumption of a reference concavity near 0.

View Article and Find Full Text PDF

The lack of evidence for large-scale glacial landscapes on Mars has led to the belief that ancient glaciations had to be frozen to the ground. Here we propose that the fingerprints of Martian wet-based glaciation should be the remnants of the ice sheet drainage system instead of landforms generally associated with terrestrial ice sheets. We use the terrestrial glacial hydrology framework to interrogate how the Martian surface gravity affects glacial hydrology, ice sliding, and glacial erosion.

View Article and Find Full Text PDF

Understanding of the relationships between tectonic deformation and exhumation in the Himalaya remains incomplete, especially at the ends of the chain.

View Article and Find Full Text PDF

The establishment of continental-scale drainage systems on Earth is largely controlled by topography related to plate boundary deformation and buoyant mantle. Drainage patterns of the great rivers in Asia are thought to be highly dynamic during the Cenozoic collision of India and Eurasia, but the drainage pattern and landscape evolution prior to the development of high topography in eastern Tibet remain largely unknown. Here we report the results of petro-stratigraphy, heavy-mineral analysis, and detrital zircon U-Pb dating from late Cretaceous-early Palaeogene sedimentary basin strata along the present-day eastern margin of the Tibetan Plateau.

View Article and Find Full Text PDF