Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima.
View Article and Find Full Text PDFSeagrass meadows are well-known for their capacity to capture and store blue carbon in sediments. However carbon stocks vary significantly between meadows, spanning more than three orders of magnitude on both local and global scales. Understanding the drivers of seagrass carbon stocks could help improve strategies for incorporating blue carbon into management plans.
View Article and Find Full Text PDFKelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene.
View Article and Find Full Text PDFCycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures.
View Article and Find Full Text PDF