Publications by authors named "K M Morozov"

The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles.

View Article and Find Full Text PDF
Article Synopsis
  • Chromatin structure plays a crucial role in determining gene expression and cell identity, especially in neurons, through the action of polycomb group (PcG) proteins.
  • A study mapping the 3D genome in neuronal and non-neuronal cells from the Wernicke's area shows that neurons have less separation between active and inactive gene regions compared to other brain cells.
  • Neuronal cells display unique chromatin interactions, including a specific network of PcG contacts linked to genes that control development, with a distinct pattern of histone modifications that suggest a functional significance of these interactions for neuron identity.
View Article and Find Full Text PDF

Solvent-induced interactions of nanoparticles in colloidal solutions can substantially affect their physicochemical and transport properties. Predicting these interactions is challenging because the natural causes of the interactions are unclear. Here, we present a comprehensive experimental and theoretical study of the coagulation stability of the surfacted magnetic colloids.

View Article and Find Full Text PDF

Correction for 'Shape-controlled anisotropy of superparamagnetic micro-/nanohelices' by Alexander M. Leshansky , , 2016, , 14127-14138, https://doi.org/10.

View Article and Find Full Text PDF

The thermophoretic motion of nonionic colloids in an inhomogeneous temperature field is due to the solvent-colloid dispersion interactions. The latter form an attractive near-particle "gravity" field that leads to sinking of the colder solvent layers toward a colloid. The spatial extension of this microconvective motion is comparable to the size of the colloids, which prove to be small enough to observe their own regular thermophoretic drift to the cold.

View Article and Find Full Text PDF