Given its real-time capability to quantify mechanical tissue properties, ultrasound shear wave elastography holds significant promise in clinical musculoskeletal imaging. However, existing shear wave elastography methods fall short in enabling full-limb analysis of 3D anatomical structures under diverse loading conditions, and may introduce measurement bias due to sonographer-applied force on the transducer. These limitations pose numerous challenges, particularly for 3D computational biomechanical tissue modeling in areas like prosthetic socket design.
View Article and Find Full Text PDFThe objective of this study is to evaluate the mechanical properties and energy absorption characteristics of the gyroid, dual-lattice and spinodoid structures, as biomimetic lattices, through finite element analysis and experimental characterisation. As part of the study, gyroid and dual-lattice structures at 10% volume fraction were 3D-printed using an elastic resin, and mechanically tested under uniaxial compression. Computational models were calibrated to the observed experimental data and the response of higher volume fraction structures were simulated in an explicit finite element solver.
View Article and Find Full Text PDFMechanical properties of an aneurysmatic thoracic aorta are potential markers of future growth and remodelling and can help to estimate the risk of rupture. Aortic geometries obtained from routine medical imaging do not display wall stress distribution and mechanical properties. Mechanical properties for a given vessel may be determined from medical images at different physiological pressures using inverse finite element analysis.
View Article and Find Full Text PDF