Red blood cells (RBCs) play a role in the regulation of vascular tone via release of adenosine triphosphate (ATP) into the vasculature in response to various stimuli. Interestingly, ApoE/LDLR double-deficient (ApoE/LDLR) mice, a murine model of atherosclerosis, display a higher exercise capacity compared to the age-matched controls. However, it is not known whether increased exercise capacity in ApoE/LDLR mice is linked to the altered ATP release from RBCs.
View Article and Find Full Text PDFBackground: In 2022, more than 650,000 new cases of cervical cancer and more than 340,000 deaths were registered worldwide. Poland has some of the highest incidence and mortality rates from cervical cancer in Europe, despite the Cervical Cancer Prevention Program implemented for many years. Nowadays, with more information available, women should not die from cervical cancer (CC).
View Article and Find Full Text PDFThe regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus.
View Article and Find Full Text PDFHeme released from damaged and senescent red blood cells (RBCs) may contribute to oxidant-mediated cell injury. One of the recently investigated physiological processes, essential in preventing the inflammatory impact of labile heme, is its uptake from the bloodstream by endothelial cells (ECs). In this study, we investigated heme uptake by ECs starting from the model studies on the in vitro cellular level, through the endothelium layer on the ex vivo murine aortic tissues.
View Article and Find Full Text PDFPsoriasis, a prevalent inflammatory skin disorder affecting a significant percentage of the global population, poses challenges in its management, necessitating the exploration of novel cost-effective and widely accessible therapeutic options. This study investigates the potential of ursolic acid (UA), a triterpenoid known for its anti-inflammatory and pro-apoptotic properties, in addressing psoriasis-related inflammation and keratinocyte hyperproliferation. The research involved in vitro models employing skin and immune cells to assess the effects of UA on psoriasis-associated inflammation.
View Article and Find Full Text PDF