We report on an experimental observation of the streaking of betatron x rays in a curved laser wakefield accelerator. The streaking of the betatron x rays was realized by launching a laser pulse into a plasma with a transverse density gradient. By controlling the plasma density and the density gradient, we realized the steering of the laser driver, electron beam, and betatron x rays simultaneously.
View Article and Find Full Text PDFThe generation of low emittance electron beams from laser-driven wakefields is crucial for the development of compact x-ray sources. Here, we show new results for the injection and acceleration of quasimonoenergetic electron beams in low amplitude wakefields experimentally and using simulations. This is achieved by using two laser pulses decoupling the wakefield generation from the electron trapping via ionization injection.
View Article and Find Full Text PDFStructured intense laser beams offer degrees of freedom that are highly attractive for high-field science applications. However, the performance of high-power laser beams in these applications is often hindered by deviations from the desired spatiotemporal profile. This study reports the wavefront optimization of ultrafast Laguerre-Gaussian beams through the synergy of adaptive optics and genetic algorithm-guided feedback.
View Article and Find Full Text PDFPlants and other photosynthetic organisms have been suggested as potential pervasive biosensors for nuclear nonproliferation monitoring. We demonstrate that ultrafast laser filament-induced fluorescence of chlorophyll in the green alga Chlamydomonas reinhardtii is a promising method for remote, in-field detection of stress from exposure to nuclear materials. This method holds an advantage over broad-area surveillance, such as solar-induced fluorescence monitoring, when targeting excitation of a specific plant would improve the detectability, for example when local biota density is low.
View Article and Find Full Text PDFA paradigm shift in the physics of laser-plasma interactions is approaching with the commissioning of multipetawatt laser facilities worldwide. Radiation reaction processes will result in the onset of electron-positron pair cascades and, with that, the absorption and partitioning of the incident laser energy, as well as the energy transport throughout the irradiated targets. To accurately quantify these effects, one must know the focused intensity on target in situ.
View Article and Find Full Text PDF