Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice.
View Article and Find Full Text PDFBackground: Cancer pain is associated with increased pain sensitivity to noxious (hyperalgesia) and normally innocuous (allodynia) stimuli due to activation of nociceptors by tumour-derived mediators or tumour infiltration of nerves. The pain sensitization is accompanied by modifications in gene expression, but specifically regulated genes are largely unknown. The 25 kDa synaptosomal-associated protein (SNAP-25) is involved in chemical neurotransmission at the synaptic cleft.
View Article and Find Full Text PDFAccumulating lines of evidence indicate that hydrogen sulfide (H2S) contributes to the processing of chronic pain. However, the sources of H2S production in the nociceptive system are poorly understood. Here we investigated the expression of the H2S releasing enzyme cystathionine γ-lyase (CSE) in the nociceptive system and characterized its role in chronic pain signaling using CSE deficient mice.
View Article and Find Full Text PDFBackground: Pain is one of the most common reasons for consulting a physician. Chronic pain patients often suffer from a variety of comorbidities, such as depression and anxiety and they are therefore often simultaneously treated with more than one drug. The probability of drug interactions increases with every additional drug.
View Article and Find Full Text PDFEmerging lines of evidence indicate that production of reactive oxygen species (ROS) at distinct sites of the nociceptive system contributes to the processing of neuropathic pain. However, the mechanisms underlying ROS production during neuropathic pain processing are not fully understood. We here detected the ROS-generating nicotinamide adenine dinucleotide phosphate oxidase isoform Nox2 in macrophages of dorsal root ganglia (DRG) in mice.
View Article and Find Full Text PDF