Salinity variations are the main reason for rice yield fluctuations in salt-prone regions throughout the dry season (Boro season). Plant breeders must produce new rice varieties that are more productive, salt tolerant, and stable across a variety of settings to ensure Bangladesh's food sustainability. To assess the yield and stability, we used fifteen rice genotypes containing two tolerant checks BRRI dhan67, Binadhan-10 and the popular Boro rice variety BRRI dhan28 in different salinity "hotspot" in three successive years followed by additive main effects and multiplicative interaction (AMMI) model utilizing a randomized complete block (RCB) design with two replications.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
Achieving high-yield potential is always the ultimate objective of any breeding program. However, various abiotic stresses such as salinity, drought, cold, flood, and heat hampered rice productivity tremendously. Salinity is one of the most important abiotic stresses that adversely affect rice grain yield.
View Article and Find Full Text PDFTo assess the efficiency of genetic improvement programs, it is essential to assess the genetic trend in long-term data. The present study estimates the genetic trends for grain yield of rice varieties released between 1970 and 2020 by the Bangladesh Rice Research Institute. The yield of the varieties was assessed from 2001-2002 to 2020-2021 in multi-locations trials.
View Article and Find Full Text PDFSoil salinity is a major constraint to rice production in coastal areas around the globe, and modern high-yielding rice cultivars are more sensitive to high salt stress, which limits rice productivity. Traditional breeding programs find it challenging to develop stable salt-tolerant rice cultivars with other stress-tolerant for the saline environment in Bangladesh due to large yield variations caused by excessive salinity fluctuations during the dry () season. We examined trait characterization of 18 advanced breeding lines using SNP genotyping and among them, we found line G6 (BR9621-B-1-2-11) (single breeding line with multiple-stress-tolerant QTL/genes) possessed 9 useful QTLs/genes, and two lines (G4:BR9620-2-7-1-1 and G14: IR 103854-8-3-AJY1) carried 7 QTLs/genes that control the desirable traits.
View Article and Find Full Text PDF