Much progress has been made in understanding how the brain combines signals from the two eyes. However, most of this work has involved achromatic (black and white) stimuli, and it is not clear if the same processes apply in color-sensitive pathways. In our first experiment, we measured contrast discrimination ("dipper") functions for four key ocular configurations (monocular, binocular, half-binocular, and dichoptic), for achromatic, isoluminant L-M and isoluminant S-(L+M) sine-wave grating stimuli (L: long-, M: medium-, S: short-wavelength).
View Article and Find Full Text PDFBackground: Ticks are an important driver of veterinary health care, causing irritation and sometimes infection to their hosts. We explored epidemiological and geo-referenced data from > 7 million electronic health records (EHRs) from cats and dogs collected by the Small Animal Veterinary Surveillance Network (SAVSNET) in Great Britain (GB) between 2014 and 2021 to assess the factors affecting tick attachment in an individual and at a spatiotemporal level.
Methods: EHRs in which ticks were mentioned were identified by text mining; domain experts confirmed those with ticks on the animal.
Bodily resizing illusions typically use visual and/or tactile inputs to produce a vivid experience of one's body changing size. Naturalistic auditory input (an input that reflects the natural sounds of a stimulus) has been used to increase illusory experience during the rubber hand illusion, whilst non-naturalistic auditory input can influence estimations of finger length. We aimed to use a non-naturalistic auditory input during a hand-based resizing illusion using augmented reality, to assess whether the addition of an auditory input would increase both subjective illusion strength and measures of performance-based tasks.
View Article and Find Full Text PDFTicks Tick Borne Dis
January 2024