IEEE Trans Pattern Anal Mach Intell
January 2025
Given radiology images, automatic radiology report generation aims to produce informative text that reports diseases. It can benefit current clinical practice in diagnostic radiology. Existing methods typically rely on large-scale medical datasets annotated by clinicians to train desirable models.
View Article and Find Full Text PDFRadiology images are one of the most commonly used in daily clinical diagnosis. Typically, clinical diagnosis using radiology images involves disease reporting and classification, where the former is a multimodal task whereby textual reports are generated to describe clinical findings in images, as are common in various domains, e.g.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) have identified tens of thousands of disease associated variants and provided critical insights into developing effective treatments. However, limited sample sizes have hindered the discovery of variants for uncommon and rare diseases. Here, we introduce KGWAS, a novel geometric deep learning method that leverages a massive functional knowledge graph across variants and genes to improve detection power in small-cohort GWASs significantly.
View Article and Find Full Text PDF